
Google Data Engineering Cheatsheet
Compiled by Maverick Lin (http://mavericklin.com)

Last Updated August 4, 2018

Data engineering enables data-driven decision making by
collecting, transforming, and visualizing data. A data
engineer designs, builds, maintains, and troubleshoots
data processing systems with a particular emphasis on the
security, reliability, fault-tolerance, scalability, fidelity,
and efficiency of such systems.

A data engineer also analyzes data to gain insight into
business outcomes, builds statistical models to support
decision-making, and creates machine learning models to
automate and simplify key business processes.

Key Points
• Build/maintain data structures and databases
• Design data processing systems
• Analyze data and enable machine learning
• Design for reliability
• Visualize data and advocate policy
• Model business processes for analysis
• Design for security and compliance

What is Data Engineering?

GCP is a collection of Google computing resources, which
are offered via services. Data engineering services include
Compute, Storage, Big Data, and Machine Learning.

The 4 ways to interact with GCP include the console,
command-line-interface (CLI), API, and mobile app.

The GCP resource hierarchy is organized as follows. All
resources (VMs, storage buckets, etc) are organized into
projects. These projects may be organized into folders,
which can contain other folders. All folders and projects
can be brought together under an organization node.
Project folders and organization nodes are where policies
can be defined. Policies are inherited downstream and
dictate who can access what resources. Every resource
must belong to a project and every must have a billing
account associated with it.

Advantages: Performance (fast solutions), Pricing (sub-
hour billing, sustained use discounts, custom machine ty-
pes), PaaS Solutions, Robust Infrastructure

;

Google Compute Platform (GCP)

Hadoop
Data can no longer fit in memory on one machine (mo-
nolithic), so a new way of computing was devised using
many computers to process the data (distributed). Such
a group is called a cluster, which makes up server farms.
All of these servers have to be coordinated in the following
ways: partition data, coordinate computing tasks, handle
fault tolerance/recovery, and allocate capacity to process.

Hadoop is an open source distributed processing fra-
mework that manages data processing and storage for big
data applications running in clustered systems. It is com-
prised of 3 main components:

• Hadoop Distributed File System (HDFS):
a distributed file system that provides high-
throughput access to application data by partitio-
ning data across many machines

• YARN: framework for job scheduling and cluster
resource management (task coordination)

• MapReduce: YARN-based system for parallel
processing of large data sets on multiple machines

HDFS
Each disk on a different machine in a cluster is comprised
of 1 master node; the rest are data nodes. The master
node manages the overall file system by storing the
directory structure and metadata of the files. The
data nodes physically store the data. Large files are
broken up/distributed across multiple machines, which
are replicated across 3 machines to provide fault tolerance.

MapReduce
Parallel programming paradigm which allows for proces-
sing of huge amounts of data by running processes on mul-
tiple machines. Defining a MapReduce job requires two
stages: map and reduce.

• Map: operation to be performed in parallel on small
portions of the dataset. the output is a key-value
pair < K,V >

• Reduce: operation to combine the results of Map

YARN- Yet Another Resource Negotiator
Coordinates tasks running on the cluster and assigns new
nodes in case of failure. Comprised of 2 subcomponents:
the resource manager and the node manager. The re-
source manager runs on a single master node and sche-
dules tasks across nodes. The node manager runs on all
other nodes and manages tasks on the individual node.

;

Hadoop Overview

An entire ecosystem of tools have emerged around
Hadoop, which are based on interacting with HDFS.

Hive: data warehouse software built o top of Hadoop that
facilitates reading, writing, and managing large datasets
residing in distributed storage using SQL-like queries (Hi-
veQL). Hive abstracts away underlying MapReduce jobs
and returns HDFS in the form of tables (not HDFS).
Pig: high level scripting language (Pig Latin) that enables
writing complex data transformations. It pulls unstructu-
red/incomplete data from sources, cleans it, and places it
in a database/data warehouses. Pig performs ETL into
data warehouse while Hive queries from data warehouse
to perform analysis (GCP: DataFlow).
Spark: framework for writing fast, distributed programs
for data processing and analysis. Spark solves similar pro-
blems as Hadoop MapReduce but with a fast in-memory
approach. It is an unified engine that supports SQL que-
ries, streaming data, machine learning and graph proces-
sing. Can operate separately from Hadoop but integrates
well with Hadoop. Data is processed using Resilient Dis-
tributed Datasets (RDDs), which are immutable, lazily
evaluated, and tracks lineage.
Hbase: non-relational, NoSQL, column-oriented data-
base management system that runs on top of HDFS. Well
suited for sparse data sets (GCP: BigTable)
Flink/Kafka: stream processing framework. Batch stre-
aming is for bounded, finite datasets, with periodic up-
dates, and delayed processing. Stream processing is for
unbounded datasets, with continuous updates, and imme-
diate processing. Stream data and stream processing must
be decoupled via a message queue. Can group streaming
data (windows) using tumbling (non-overlapping time),
sliding (overlapping time), or session (session gap) win-
dows.
Beam: programming model to define and execute data
processing pipelines, including ETL, batch and stream
(continuous) processing. After building the pipeline, it
is executed by one of Beam’s distributed processing back-
ends (Apache Apex, Apache Flink, Apache Spark, and
Google Cloud Dataflow). Modeled as a Directed Acyclic
Graph (DAG).
Oozie: workflow scheduler system to manage Hadoop jobs
Sqoop: transferring framework to transfer large amounts
of data into HDFS from relational databases (MySQL)

;

Hadoop Ecosystem

1



Identity Access Management (IAM)
Access management service to manage different members
of the platform- who has what access for which resource.

Each member has roles and permissions to allow them
access to perform their duties on the platform. 3 member
types: Google account (single person, gmail account),
service account (non-person, application), and Google
Group (multiple people). Roles are a set of specific
permissions for members. Cannot assign permissions to
user directly, must grant roles.

If you grant a member access on a higher hierarchy level,
that member will have access to all levels below that
hierarchy level as well. You cannot be restricted a lower
level. The policy is a union of assigned and inherited
policies.

Primitive Roles: Owner (full access to resources,
manage roles), Editor (edit access to resources, change or
add), Viewer (read access to resources)
Predefined Roles: finer-grained access control than
primitive roles, predefined by Google Cloud
Custom Roles

Best Practice: use predefined roles when they exist (over
primitive). Follow the principle of least privileged favors.

IAM

GCP’s monitoring, logging, and diagnostics solution. Pro-
vides insights to health, performance, and availability of
applications.
Main Functions

• Debugger: inspect state of app in real time without
stopping/slowing down e.g. code behavior

• Error Reporting: counts, analyzes, aggregates
crashes in cloud services

• Monitoring: overview of performance, uptime and
heath of cloud services (metrics, events, metadata)

• Alerting: create policies to notify you when health
and uptime check results exceed a certain limit

• Tracing: tracks how requests propagate through
applications/receive near real-time performance re-
sults, latency reports of VMs

• Logging: store, search, monitor and analyze log
data and events from GCP

Stackdriver

OLAP vs. OLTP
Online Analytical Processing (OLAP): primary
objective is data analysis. It is an online analysis and
data retrieving process, characterized by a large volume
of data and complex queries, uses data warehouses.
Online Transaction Processing (OLTP): primary
objective is data processing, manages database modifi-
cation, characterized by large numbers of short online
transactions, simple queries, and traditional DBMS.

Row vs. Columnar Database
Row Format: stores data by row
Column Format: stores data tables by column rather
than by row, which is suitable for analytical query proces-
sing and data warehouses

IaaS, Paas, SaaS
IaaS: gives you the infrastructure pieces (VMs) but you
have to maintain/join together the different infrastructure
pieces for your application to work. Most flexible option.
PaaS: gives you all the infrastructure pieces already
joined so you just have to deploy source code on the
platform for your application to work. PaaS solutions are
managed services/no-ops (highly available/reliable) and
serverless/autoscaling (elastic). Less flexible than IaaS

Fully Managed, Hotspotting

Key Concepts

Google App Engine
Flexible, serverless platform for building highly available
applications. Ideal when you want to focus on writing
and developing code and do not want to manage servers,
clusters, or infrastructures.
Use Cases: web sites, mobile app and gaming backends,
RESTful APIs, IoT apps.

Google Kubernetes (Container) Engine
Logical infrastructure powered by Kubernetes, an open-
source container orchestration system. Ideal for managing
containers in production, increase velocity and operatabi-
lity, and don’t have OS dependencies.
Use Cases: containerized workloads, cloud-native
distributed systems, hybrid applications.

Google Compute Engine (IaaS)
Virtual Machines (VMs) running in Google’s global data
center. Ideal for when you need complete control over
your infrastructure and direct access to high-performance
hardward or need OS-level changes.
Use Cases: any workload requiring a specific OS or
OS configuration, currently deployed and on-premises
software that you want to run in the cloud.

Summary: AppEngine is the PaaS option- serverless
and ops free. ComputeEngine is the IaaS option- fully
controllable down to OS level. Kubernetes Engine is in
the middle- clusters of machines running Kuberenetes and
hosting containers.

Additional Notes
You can also mix and match multiple compute options.
Preemptible Instances: instances that run at a much
lower price but may be terminated at any time, self-
terminate after 24 hours. ideal for interruptible workloads
Snapshots: used for backups of disks
Images: VM OS (Ubuntu, CentOS)

Compute Choices

2



Persistent Disk Fully-managed block storage (SSDs)
that is suitable for VMs/containers. Good for snapshots
of data backups/sharing read-only data across VMs.

Cloud Storage Infinitely scalable, fully-managed and
highly reliable object/blob storage. Good for data blobs:
images, pictures, videos. Cannot query by content.

To use Cloud Storage, you create buckets to store data and
the location can be specified. Bucket names are globally
unique. There a 4 storage classes:

• Multi-Regional: frequent access from anywhere in
the world. Use for ”hot data”

• Regional: high local performance for region
• Nearline: storage for data accessed less than once

a month (archival)
• Coldline: less than once a year (archival)

Storage

Cloud SQL
Fully-managed relational database service (supports
MySQL/PostgreSQL). Use for relational data: tables,
rows and columns, and super structured data. SQL
compatible and can update fields. Not scalable (small
storage- GBs). Good for web frameworks and OLTP wor-
kloads (not OLAP). Can use Cloud Storage Transfer
Service or Transfer Appliance to data into Cloud
Storage (from AWS, local, another bucket). Use gsutil if
copying files over from on-premise.

Cloud Spanner
Google-proprietary offering, more advanced than Cloud
SQL. Mission-critical, relational database. Supports ho-
rizontal scaling. Combines benefits of of relational and
non-relational databases.

• Ideal: relational, structured, and semi-structured
data that requires high availability, strong consis-
tency, and transactional reads and writes

• Avoid: data is not relational or structured, want
an open source RDBMS, strong consistency and
high availability is unnecessary

Cloud Spanner Data Model
A database can contain 1+ tables. Tables look like relati-
onal database tables. Data is strongly typed: must define
a schema for each database and that schema must specify
the data types of each column of each table.
Parent-Child Relationships: Can optionally define re-
lationships between tables to physically co-locate their
rows for efficient retrieval (data locality: physically sto-
ring 1+ rows of a table with a row from another table.

CloudSQL and Cloud Spanner- Relational DBs

Columnar database ideal applications that need high
throughput, low latencies, and scalability (IoT, user analy-
tics, time-series data, graph data) for non-structured
key/value data (each value is < 10 MB). A single value
in each row is indexed and this value is known as the row
key. Does not support SQL queries. Zonal service. Not
good for data less than 1TB of data or items greater than
10MB. Ideal at handling large amounts of data (TB/PB)
for long periods of time.

Data Model
4-Dimensional: row key, column family (table name), co-
lumn name, timestamp.

• Row key uniquely identifies an entity and columns
contain individual values for each row.

• Similar columns are grouped into column families.
• Each column is identified by a combination of the

column family and a column qualifier, which is a
unique name within the column family.

Load Balancing Automatically manages splitting,
merging, and rebalancing. The master process balances
workload/data volume within clusters. The master
splits busier/larger tablets in half and merges less-
accessed/smaller tablets together, redistributing them
between nodes.
Best write performance can be achieved by using row
keys that do not follow a predictable order and grouping
related rows so they are adjacent to one another, which re-
sults in more efficient multiple row reads at the same time.

Security Security can be managed at the project and
instance level. Does not support table-level, row-level,
column-level, or cell-level security restrictions.

Other Storage Options
- Need SQL for OLTP: CloudSQL/Cloud Spanner.
- Need interactive querying for OLAP: BigQuery.
- Need to store blobs larger than 10 MB: Cloud Storage.
- Need to store structured objects in a document database,
with ACID and SQL-like queries: Cloud Datastore.

BigTable

Designing Your Schema
Designing a Bigtable schema is different than designing a
schema for a RDMS. Important considerations:

• Each table has only one index, the row key (4 KB)
• Rows are sorted lexicographically by row key.
• All operations are atomic (ACID) at row level.
• Both reads and writes should be distributed evenly
• Try to keep all info for an entity in a single row
• Related entities should be stored in adjacent rows
• Try to store 10 MB in a single cell (max 100 MB)

and 100 MB in a single row (256 MB)
• Supports max of 1,000 tables in each instance.
• Choose row keys that don’t follow predictable order
• Can use up to around 100 column families
• Column Qualifiers: can create as many as you need

in each row, but should avoid splitting data across
more column qualifiers than necessary (16 KB)

• Tables are sparse. Empty columns don’t take up
any space. Can create large number of columns, even
if most columns are empty in most rows.

• Field promotion (shift a column as part of the row
key) and salting (remainder of division of hash of
timestamp plus row key) are ways to help design
row keys.

For time-series data, use tall/narrow tables.
Denormalize- prefer multiple tall and narrow tables

BigTable Part II

3



Scalable, fully-managed Data Warehouse with extremely
fast SQL queries. Allows querying for massive volumes
of data at fast speeds. Good for OLAP workloads
(petabyte-scale), Big Data exploration and processing,
and reporting via Business Intelligence (BI) tools. Sup-
ports SQL querying for non-relational data. Relatively
cheap to store, but costly for querying/processing. Good
for analyzing historical data.

Data Model
Data tables are organized into units called datasets, which
are sets of tables and views. A table must belong to da-
taset and a datatset must belong to a porject. Tables
contain records with rows and columns (fields).
You can load data into BigQuery via two options: batch
loading (free) and streaming (costly).

Security
BigQuery uses IAM to manage access to resources. The
three types of resources in BigQuery are organizations,
projects, and datasets. Security can be applied at the
project and dataset level, but not table or view level.

Views
A view is a virtual table defined by a SQL query. When
you create a view, you query it in the same way you
query a table. Authorized views allow you to
share query results with particular users/groups
without giving them access to underlying data.
When a user queries the view, the query results contain
data only from the tables and fields specified in the query
that defines the view.

Billing
Billing is based on storage (amount of data stored),
querying (amount of data/number of bytes processed by
query), and streaming inserts. Storage options are ac-
tive and long-term (modified or not past 90 days). Query
options are on-demand and flat-rate.
Query costs are based on how much data you read/process,
so if you only read a section of a table (partition),
your costs will be reduced. Any charges occurred
are billed to the attached billing account. Expor-
ting/importing/copying data is free.

BigQuery

Partitioned tables
Special tables that are divided into partitions based on
a column or partition key. Data is stored on different
directories and specific queries will only run on slices of
data, which improves query performance and reduces
costs. Note that the partitions will not be of the same
size. BigQuery automatically does this.
Each partitioned table can have up to 2,500 partitions
(2500 days or a few years). The daily limit is 2,000
partition updates per table, per day. The rate limit: 50
partition updates every 10 seconds.

Two types of partitioned tables:
• Ingestion Time: Tables partitioned based on

the data’s ingestion (load) date or arrival date.
Each partitioned table will have pseudocolumn
PARTITIONTIME, or time data was loaded into

table. Pseudocolumns are reserved for the table and
cannot be used by the user.

• Partitioned Tables: Tables that are partitioned
based on a TIMESTAMP or DATE column.

Windowing: window functions increase the efficiency
and reduce the complexity of queries that analyze
partitions (windows) of a dataset by providing complex
operations without the need for many intermediate
calculations. They reduce the need for intermediate
tables to store temporary data

Bucketing
Like partitioning, but each split/partition should be the
same size and is based on the hash function of a column.
Each bucket is a separate file, which makes for more
efficient sampling and joining data.

Querying
After loading data into BigQuery, you can query using
Standard SQL (preferred) or Legacy SQL (old). Query
jobs are actions executed asynchronously to load, export,
query, or copy data. Results can be saved to permanent
(store) or temporary (cache) tables. 2 types of queries:

• Interactive: query is executed immediately, counts
toward daily/concurrent usage (default)

• Batch: batches of queries are queued and the query
starts when idle resources are available, only counts
for daily and switches to interactive if idle for 24
hours

Wildcard Tables
Used if you want to union all similar tables with similar
names. ’*’ (e.g. project.dataset.Table*)

BigQuery Part II

Controlling Costs
- Avoid SELECT * (full scan), select only columns needed
(SELECT * EXCEPT)
- Sample data using preview options for free
- Preview queries to estimate costs (dryrun)
- Use max bytes billed to limit query costs
- Don’t use LIMIT clause to limit costs (still full scan)
- Monitor costs using dashboards and audit logs
- Partition data by date
- Break query results into stages
- Use default table expiration to delete unneeded data
- Use streaming inserts wisely
- Set hard limit on bytes (members) processed per day

Query Performance
Generally, queries that do less work perform better.

Input Data/Data Sources
- Avoid SELECT *
- Prune partitioned queries (for time-partitioned table,
use PARTITIONTIME pseudo column to filter partitions)
- Denormalize data (use nested and repeated fields)
- Use external data sources appropriately
- Avoid excessive wildcard tables

SQL Anti-Patterns
- Avoid self-joins., use window functions (perform calcu-
lations across many table rows related to current row)
- Partition/Skew: avoid unequally sized partitions, or
when a value occurs more often than any other value
- Cross-Join: avoid joins that generate more outputs than
inputs (pre-aggregate data or use window function)
Update/Insert Single Row/Column: avoid point-specific
DML, instead batch updates and inserts

Managing Query Outputs
- Avoid repeated joins and using the same subqueries
- Writing large sets has performance/cost impacts. Use
filters or LIMIT clause. 128MB limit for cached results
- Use LIMIT clause for large sorts (Resources Exceeded)

Optimizing Query Computation
- Avoid repeatedly transforming data via SQL queries
- Avoid JavaScript user-defined functions
- Use approximate aggregation functions (approx count)
- Order query operations to maximize performance. Use
ORDER BY only in outermost query, push complex ope-
rations to end of the query.
- For queries that join data from multiple tables, optimize
join patterns. Start with the largest table.

Optimizing BigQuery

4



NoSQL document database that automatically handles
sharding and replication (highly available, scalable and
durable). Supports ACID transactions, SQL-like queries.
Query execution depends on size of returned result, not
size of dataset. Ideal for ”needle in a haystack”operation
and applications that rely on highly available structured
data at scale

Data Model
Data objects in Datastore are known as entities. An
entity has one or more named properties, each of which
can have one or more values. Each entity in has a key
that uniquely identifies it. You can fetch an individual
entity using the entity’s key, or query one or more entities
based on the entities’ keys or property values.

Ideal for highly structured data at scale: product
catalogs, customer experience based on users past acti-
vities/preferences, game states. Don’t use if you need
extremely low latency or analytics (complex joins, etc).

DataStore

Fully-managed cloud service for running Spark and
Hadoop clusters. Provides access to Hadoop cluster on
GCP and Hadoop-ecosystem tools (Pig, Hive, and Spark).
Can be used to implement ETL warehouse solution.

Preferred if migrating existing on-premise Hadoop or
Spark infrastructure to GCP without redevelopment ef-
fort. Dataflow is preferred for a new development.

DataProc

Managed service for developing and executing data
processing patterns (ETL) (based on Apache Beam) for
streaming and batch data. Preferred for new Hadoop or
Spark infrastructure development. Usually site between
front-end and back-end storage solutions.

Concepts
Pipeline: encapsulates series of computations that
accepts input data from external sources, transforms data
to provide some useful intelligence, and produce output
PCollections: abstraction that represents a potentially
distributed, multi-element data set, that acts as the
pipeline’s data. PCollection objects represent input,
intermediate, and output data. The edges of the pipeline.
Transforms: operations in pipeline. A transform
takes a PCollection(s) as input, performs an operation
that you specify on each element in that collection,
and produces a new output PCollection. Uses the
”what/where/when/how”model. Nodes in the pipeline.
Composite transforms are multiple transforms: combi-
ning, mapping, shuffling, reducing, or statistical analysis.
Pipeline I/O: the source/sink, where the data flows
in and out. Supports read and write transforms for a
number of common data storage types, as well as custom.

Windowing
Windowing a PCollection divides the elements into win-
dows based on the associated event time for each element.
Especially useful for PCollections with unbounded size,
since it allows operating on a sub-group (mini-batches).

Triggers
Allows specifying a trigger to control when (in processing
time) results for the given window can be produced. If
unspecified, the default behavior is to trigger first when
the watermark passes the end of the window, and then
trigger again every time there is late arriving data.

DataFlow

Asynchronous messaging service that decouples senders
and receivers. Allows for secure and highly available com-
munication between independently written applications.
A publisher app creates and sends messages to a to-
pic. Subscriber applications create a subscription to a
topic to receive messages from it. Communication can
be one-to-many (fan-out), many-to-one (fan-in), and
many-to-many. Gaurantees at least once delivery before
deletion from queue.

Scenarios
• Balancing workloads in network clusters- queue can

efficiently distribute tasks
• Implementing asynchronous workflows
• Data streaming from various processes or devices
• Reliability improvement- in case zone failure
• Distributing event notifications
• Refreshing distributed caches
• Logging to multiple systems

Benefits/Features
Unified messaging, global presence, push- and pull-style
subscriptions, replicated storage and guaranteed at-least-
once message delivery, encryption of data at rest/transit,
easy-to-use REST/JSON API

Data Model
Topic, Subscription, Message (combination of data
and attributes that a publisher sends to a topic and is
eventually delivered to subscribers), Message Attribute
(key-value pair that a publisher can define for a message)

Message Flow
• Publisher creates a topic in the Cloud Pub/Sub ser-

vice and sends messages to the topic.
• Messages are persisted in a message store until they

are delivered and acknowledged by subscribers.
• The Pub/Sub service forwards messages from a topic

to all of its subscriptions, individually. Each subs-
cription receives messages either by pushing/pulling.

• The subscriber receives pending messages from its
subscription and acknowledges message.

• When a message is acknowledged by the subscriber,
it is removed from the subscription’s message queue.

Pub/Sub

5



Managed infrastructure of GCP with the power and
flexibility of TensorFlow. Can use it to train ML models
at scale and host trained models to make predictions
about new data in the cloud. Supported frameworks
include Tensorflow, scikit-learn and XGBoost.

ML Workflow
Evaluate Problem: What is the problem and is ML the
best approach? How will you measure model’s success?
Choosing Development Environment: Supports
Python 2 and 3 and supports TF, scikit-learn, XGBoost
as frameworks.
Data Preparation and Exploration: Involves gathe-
ring, cleaning, transforming, exploring, splitting, and
preprocessing data. Also includes feature engineering.
Model Training/Testing: Provide access to train/test
data and train them in batches. Evaluate progress/results
and adjust the model as needed. Export/save trained
model (250 MB or smaller to deploy in ML Engine).
Hyperparameter Tuning: hyperparameters are varia-
bles that govern the training process itself, not related to
the training data itself. Usually constant during training.
Prediction: host your trained ML models in the cloud
and use the Cloud ML prediction service to infer target
values for new data

ML APIs
Speech-to-Text: speech-to-text conversion
Text-to-Speech: text-to-speech conversion
Translation: dynamically translate between languages
Vision: derive insight (objects/text) from images
Natural Language: extract information (sentiment,
intent, entity, and syntax) about the text: people, places..
Video Intelligence: extract metadata from videos

Cloud Datalab
Interactive tool (run on an instance) to explore, analyze,
transform and visualize data and build machine learning
models. Built on Jupyter. Datalab is free but may incus
costs based on usages of other services.

Data Studio
Turns your data into informative dashboards and reports.
Updates to data will automatiaclly update in dashbaord.
Query cache remembers the queries (requests for data)
issued by the components in a report (lightning bolt)-
turn off for data that changes frequently, want to prio-
ritize freshness over performance, or using a data source
that incurs usage costs (e.g. BigQuery). Prefetch cache
predicts data that could be requested by analyzing the di-
mensions, metrics, filters, and date range properties and
controls on the report.

ML Engine

Features: input data used by the ML model
Feature Engineering: transforming input features to
be more useful for the models. e.g. mapping categories to
buckets, normalizing between -1 and 1, removing null
Train/Eval/Test: training is data used to optimize the
model, evaluation is used to asses the model on new data
during training, test is used to provide the final result
Classification/Regression: regression is prediction a
number (e.g. housing price), classification is prediction
from a set of categories(e.g. predicting red/blue/green)
Linear Regression: predicts an output by multiplying
and summing input features with weights and biases
Logistic Regression: similar to linear regression but
predicts a probability
Neural Network: composed of neurons (simple building
blocks that actually “learn”), contains activation functi-
ons that makes it possible to predict non-linear outputs
Activation Functions: mathematical functions that in-
troduce non-linearity to a network e.g. RELU, tanh
Sigmoid Function: function that maps very negative
numbers to a number very close to 0, huge numbers close
to 1, and 0 to .5. Useful for predicting probabilities
Gradient Descent/Backpropagation: fundamental
loss optimizer algorithms, of which the other optimizers
are usually based. Backpropagation is similar to gradient
descent but for neural nets
Optimizer: operation that changes the weights and bia-
ses to reduce loss e.g. Adagrad or Adam
Weights / Biases: weights are values that the input fea-
tures are multiplied by to predict an output value. Biases
are the value of the output given a weight of 0.
Converge: algorithm that converges will eventually re-
ach an optimal answer, even if very slowly. An algorithm
that doesn’t converge may never reach an optimal answer.
Learning Rate: rate at which optimizers change weights
and biases. High learning rate generally trains faster but
risks not converging, whereas a lower rate trains slower
Overfitting: model performs great on the input data but
poorly on the test data (combat by dropout, early stop-
ping, or reduce # of nodes or layers)
Bias/Variance: how much output is determined by the
features. more variance often can mean overfitting, more
bias can mean a bad model
Regularization: variety of approaches to reduce over-
fitting, including adding the weights to the loss function,
randomly dropping layers (dropout)
Ensemble Learning: training multiple models with dif-
ferent parameters to solve the same problem
Embeddings: mapping from discrete objects, such as
words, to vectors of real numbers. useful because classifi-
ers/neural networks work well on vectors of real numbers

ML Concepts/Terminology

Tensorflow is an open source software library for numeri-
cal computation using data flow graphs. Everything in
TF is a graph, where nodes represent operations on data
and edges represent the data. Phase 1 of TF is building
up a computation graph and phase 2 is executing it. It is
also distributed, meaning it can run on either a cluster of
machines or just a single machine.

Tensors
In a graph, tensors are the edges and are multidimensional
data arrays that flow through the graph. Central unit
of data in TF and consists of a set of primitive values
shaped into an array of any number of dimensions.

A tensor is characterized by its rank (# dimensions
in tensor), shape (# of dimensions and size of each di-
mension), data type (data type of each element in tensor).

Placeholders and Variables
Variables: best way to represent shared, persistent state
manipulated by your program. These are the parameters
of the ML model are altered/trained during the training
process. Training variables.
Placeholders: way to specify inputs into a graph that
hold the place for a Tensor that will be fed at runtime.
They are assigned once, do not change after. Input nodes

Popular Architectures
Linear Classifier: takes input features and combines
them with weights and biases to predict output value
DNNClassifier: deep neural net, contains intermediate
layers of nodes that represent “hidden features” and
activation functions to represent non-linearity
ConvNets: convolutional neural nets. popular for image
classification.
Transfer Learning: use existing trained models as
starting points and add additional layers for the specific
use case. idea is that highly trained existing models know
general features that serve as a good starting point for
training a small network on specific examples
RNN: recurrent neural nets, designed for handling a
sequence of inputs that have “memory” of the sequence.
LSTMs are a fancy version of RNNs, popular for NLP
GAN: general adversarial neural net, one model creates
fake examples, and another model is served both fake
example and real examples and is asked to distinguish
Wide and Deep: combines linear classifiers with
deep neural net classifiers, ”wide”linear parts represent
memorizing specific examples and “deep” parts represent
understanding high level features

TensorFlow

6



Company Overview
Flowlogistic is a top logistics and supply chain provider.
They help businesses throughout the world manage their
resources and transport them to their final destination.
The company has grown rapidly, expanding their offerings
to include rail, truck, aircraft, and oceanic shipping.

Company Background
The company started as a regional trucking company,
and then expanded into other logistics markets. Because
they have not updated their infrastructure, managing and
tracking orders and shipments has become a bottleneck.
To improve operations, Flowlogistic developed proprie-
tary technology for tracking shipments in real time at
the parcel level. However, they are unable to deploy it
because their technology stack, based on Apache Kafka,
cannot support the processing volume. In addition,
Flowlogistic wants to further analyze their orders and
shipments to determine how best to deploy their resources.

Solution Concept
Flowlogistic wants to implement two concepts in the cloud:

• Use their proprietary technology in a real-time
inventory-tracking system that indicates the loca-
tion of their loads.

• Perform analytics on all their orders and shipment
logs (structured and unstructured data) to deter-
mine how best to deploy resources, which customers
to target, and which markets to expand into. They
also want to use predictive analytics to learn earlier
when a shipment will be delayed.

Business Requirements
-Build a reliable and reproducible environment with
scaled parity of production
-Aggregate data in a centralized Data Lake for analysis
-Perform predictive analytics on future shipments
-Accurately track every shipment worldwide
-Improve business agility and speed of innovation through
rapid provisioning of new resources
-Analyze/optimize architecture cloud performance
-Migrate fully to the cloud if all other requirements met

Technical Requirements
-Handle both streaming and batch data
-Migrate existing Hadoop workloads
-Ensure architecture is scalable and elastic to meet the
changing demands of the company
-Use managed services whenever possible
-Encrypt data in flight and at rest
-Connect a VPN between the production data center and
cloud environment

Case Study: Flowlogistic I

Existing Technical Environment
Flowlogistic architecture resides in a single data center:

• Databases:
– 8 physical servers in 2 clusters

∗ SQL Server: inventory, user/static data
– 3 physical servers

∗ Cassandra: metadata, tracking messages
– 10 Kafka servers: tracking message aggregation

and batch insert
• Application servers: customer front end, middleware

for order/customs
– 60 virtual machines across 20 physical servers

∗ Tomcat: Java services
∗ Nginx: static content
∗ Batch servers

• Storage appliances
– iSCSI for virtual machine (VM) hosts
– Fibre Channel storage area network (FC SAN):

SQL server storage
– Network-attached storage (NAS): image sto-

rage, logs, backups
• 10 Apache Hadoop / Spark Servers

– Core Data Lake
– Data analysis workloads

• 20 miscellaneous servers
– Jenkins, monitoring, bastion hosts, security

scanners, billing software

CEO Statement
We have grown so quickly that our inability to up-
grade our infrastructure is really hampering further
growth/efficiency. We are efficient at moving shipments
around the world, but we are inefficient at moving data
around. We need to organize our information so we can
more easily understand where our customers are and
what they are shipping.

CTO Statement
IT has never been a priority for us, so as our data
has grown, we have not invested enough in our tech-
nology. I have a good staff to manage IT, but they
are so busy managing our infrastructure that I cannot
get them to do the things that really matter, such as
organizing our data, building the analytics, and figu-
ring out how to implement the CFO’s tracking technology.

CFO Statement
Part of our competitive advantage is that we penalize our-
selves for late shipments/deliveries. Knowing where our
shipments are at all times has a direct correlation to our
bottom line and profitability. Additionally, I don’t want
to commit capital to building out a server environment.

Case Study: Flowlogistic II

1. Cloud Dataproc handles the existing workloads and
produces results as before (using a VPN).

2. At the same time, data is received through the
data center, via either stream or batch, and sent
to Pub/Sub.

3. Pub/Sub encrypts the data in transit and at rest.
4. Data is fed into Dataflow either as stream/batch

data.
5. Dataflow processes the data and sends the cleaned

data to BigQuery (again either as stream or batch).
6. Data can then be queried from BigQuery and pre-

dictive analysis can begin (using ML Engine, etc..)

Note: All services are fully managed., easily scalable, and
can handle streaming/batch data. All technical require-
ments are met.

Flowlogistic Potential Solution

7



Company Overview
MJTelco is a startup that plans to build networks
in rapidly growing, underserved markets around the
world. The company has patents for innovative optical
communications hardware. Based on these patents, they
can create many reliable, high-speed backbone links with
inexpensive hardware.

Company Background
Founded by experienced telecom executives, MJTelco uses
technologies originally developed to overcome communica-
tions challenges in space. Fundamental to their operation,
they need to create a distributed data infrastructure that
drives real-time analysis and incorporates machine lear-
ning to continuously optimize their topologies. Because
their hardware is inexpensive, they plan to overdeploy
the network allowing them to account for the impact of
dynamic regional politics on location availability and cost.

Their management and operations teams are situated
all around the globe creating many-to-many relationship
between data consumers and providers in their system.
After careful consideration, they decided public cloud is
the perfect environment to support their needs.

Solution Concept
MJTelco is running a successful proof-of-concept (PoC)
project in its labs. They have two primary needs:

• Scale and harden their PoC to support significantly
more data flows generated when they ramp to more
than 50,000 installations.

• Refine their machine-learning cycles to verify and
improve the dynamic models they use to control
topology definitions. MJTelco will also use three se-
parate operating environments – development/test,
staging, and production – to meet the needs of
running experiments, deploying new features, and
serving production customers.

Business Requirements
-Scale up their production environment with minimal cost,
instantiating resources when and where needed in an un-
predictable, distributed telecom user community.
-Ensure security of their proprietary data to protect their
leading-edge machine learning and analysis.
-Provide reliable and timely access to data for analysis
from distributed research workers.
-Maintain isolated environments that support rapid ite-
ration of their machine-learning models without affecting
their customers.

Case Study: MJTelco I

Technical Requirements
-Ensure secure and efficient transport and storage of
telemetry data.
-Rapidly scale instances to support between 10,000 and
100,000 data providers with multiple flows each.
-Allow analysis and presentation against data tables
tracking up to 2 years of data storing approximately
100m records/day. Support rapid iteration of monitoring
infrastructure focused on awareness of data pipeline
problems both in telemetry flows and in production
learning cycles.

CEO Statement
Our business model relies on our patents, analytics and
dynamic machine learning. Our inexpensive hardware
is organized to be highly reliable, which gives us cost
advantages. We need to quickly stabilize our large
distributed data pipelines to meet our reliability and
capacity commitments.

CTO Statement
Our public cloud services must operate as advertised. We
need resources that scale and keep our data secure. We
also need environments in which our data scientists can
carefully study and quickly adapt our models. Because
we rely on automation to process our data, we also need
our development and test environments to work as we
iterate.

CFO Statement
This project is too large for us to maintain the hardware
and software required for the data and analysis. Also,
we cannot afford to staff an operations team to monitor
so many data feeds, so we will rely on automation and
infrastructure. Google Cloud’s machine learning will al-
low our quantitative researchers to work on our high-value
problems instead of problems with our data pipelines.

Case Study: MJTelco II

Need Open Source GCP Solution

Compute,
Block Storage

Persistent Disks,
SSD

Persistent Disks,
SSD

Media, Blob
Storage

Filesystem,
HDFS

Cloud Storage

SQL Interface
on File Data

Hive BigQuery

Document
DB, NoSQL

CouchDB, Mon-
goDB

DataStore

Fast Scanning
NoSQL

HBase, Cassan-
dra

BigTable

OLTP RDBMS-
MySQL

CloudSQL,
Cloud Spanner

OLAP Hive BigQuery

Cloud Storage: unstructured data (blob)
CloudSQL: OLTP, SQL, structured and relational data,
no need for horizontal scaling
Cloud Spanner: OLTP, SQL, structured and relational
data, need for horizontal scaling, between RDBMS/big
data
Cloud Datastore: NoSQL, document data, key-value
structured but non-relational data (XML, HTML, query
depends on size of result (not dataset), fast to read/slow
to write
BigTable: NoSQL, key-value data, columnar, good for
sparse data, sensitive to hot spotting, high throughput
and scalability for non-structured key/value data, where
each value is typically no larger than 10 MB

Choosing a Storage Option

8



Data Lifecycle
At each stage, GCP offers multiple services to manage
your data.

1. Ingest: first stage is to pull in the raw data, such
as streaming data from devices, on-premises batch
data, application logs, or mobile-app user events and
analytics

2. Store: after the data has been retrieved, it needs
to be stored in a format that is durable and can be
easily accessed

3. Process and Analyze: the data is transformed
from raw form into actionable information

4. Explore and Visualize: convert the results of the
analysis into a format that is easy to draw insights
from and to share with colleagues and peers

Ingest
There are a number of approaches to collect raw data,
based on the data’s size, source, and latency.

• Application: data from application events, log fi-
les or user events, typically collected in a push mo-
del, where the application calls an API to send
the data to storage (Stackdriver Logging, Pub/Sub,
CloudSQL, Datastore, Bigtable, Spanner)

• Streaming: data consists of a continuous stream
of small, asynchronous messages. Common uses in-
clude telemetry, or collecting data from geographi-
cally dispersed devices (IoT) and user events and
analytics (Pub/Sub)

• Batch: large amounts of data are stored in a set of
files that are transferred to storage in bulk. com-
mon use cases include scientific workloads, backups,
migration (Storage, Transfer Service, Appliance)

Solutions

Storage
Cloud Storage: durable and highly-available object sto-
rage for structured and unstructured data
Cloud SQL: fully managed, cloud RDBMS that offers
both MySQL and PostgreSQL engines with built-in sup-
port for replication, for low-latency, transactional, relati-
onal database workloads. supports RDBMS workloads up
to 10 TB (storing financial transactions, user credentials,
customer orders)
BigTable: managed, high-performance NoSQL database
service designed for terabyte- to petabyte-scale workloads.
suitable for large-scale, high-throughput workloads such
as advertising technology or IoT data infrastructure. does
not support multi-row transactions, SQL queries or joins,
consider Cloud SQL or Cloud Datastore instead
Cloud Spanner: fully managed relational database ser-
vice for mission-critical OLTP applications. horizontally
scalable, and built for strong consistency, high availability,
and global scale. supports schemas, ACID transactions,
and SQL queries (use for retail and global supply chain,
ad tech, financial services)
BigQuery: stores large quantities of data for query and
analysis instead of transactional processing

Exploration and Visualization Data exploration and
visualization to better understand the results of the pro-
cessing and analysis.

• Cloud Datalab: interactive web-based tool that
you can use to explore, analyze and visualize data
built on top of Jupyter notebooks. runs on a VM
and automatically saved to persistent disks and can
be stored in GC Source Repo (git repo)

• Data Studio: drag-and-drop report builder that
you can use to visualize data into reports and dash-
boards that can then be shared with others, bac-
ked by live data, that can be shared and updated
easily. data sources can be data files, Google She-
ets, Cloud SQL, and BigQuery. supports query and
prefetch cache: query remembers previous queries
and if data not found, goes to prefetch cache, which
predicts data that could be requested (disable if data
changes frequently/using data source incurs charges)

Solutions- Part II

Process and Analyze
In order to derive business value and insights from data,
you must transform and analyze it. This requires a proces-
sing framework that can either analyze the data directly
or prepare the data for downstream analysis, as well as
tools to analyze and understand processing results.

• Processing: data from source systems is cleansed,
normalized, and processed across multiple machines,
and stored in analytical systems

• Analysis: processed data is stored in systems that
allow for ad-hoc querying and exploration

• Understanding: based on analytical results, data
is used to train and test automated machine-learning
models

Processing
• Cloud Dataproc: migrate your existing Hadoop or

Spark deployments to a fully-managed service that
automates cluster creation, simplifies configuration
and management of your cluster, has built-in moni-
toring and utilization reports, and can be shutdown
when not in use

• Cloud Dataflow: designed to simplify big data for
both streaming and batch workloads, focus on filte-
ring, aggregating, and transforming your data

• Cloud Dataprep: service for visually exploring,
cleaning, and preparing data for analysis. can
transform data of any size stored in CSV, JSON, or
relational-table formats

Analyzing and Querying
• BigQuery: query using SQL, all data encrypted,

user analysis, device and operational metrics, busi-
ness intelligence

• Task-Specific ML: Vision, Speech, Natural Lan-
guage, Translation, Video Intelligence

• ML Engine: managed platform you can use to run
custom machine learning models at scale

Solutions- Part III

streaming data: use Pub/Sub and Dataflow in combination

9


